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Preface

This text is by its nature strange. It’s the source text for the second part of CAS CS 320: Concepts of Program-
ming Languages at Boston University, and the intended audience is ultimately students in this course. My
hope is that it might find a wider audience, but describing a more inclusive notion of “intended audience”
requires some context: CS320 is a course in the computer science cirriculum at Boston University that is
semi-required. And as much as I believe that everyone should know something about how programming
languages work, there is a non-negligible portion of the student population that does not agree with this
sentiment. So we’re put in the difficult but perennial position: how do we get students interested in a topic
they’re studying because they’re told they have to? The point: the intended audience of this text is undergrad-
uate students who don’t necessarily want to do research in programming languages, but “want” to know
something about how programming languages work. There’s a lot we don’t cover, and although we try to
maintain the rigor of some of the more serious texts in the field [6, 4, 3, 5] we’re not gonna to lose sleep over
the less-than-complete coverage we inevitably end up with.

The other operative part of the description above is “the second part of”. We typically spend the first
part of the course teaching OCaml from OCaml Programming: Correct + Efficient + Beautiful. This text
should be viewed to some degree as an extension of that one, with the section on interpreters fleshed out.
As such, we’re greatly in debt to Michael R. Clarkson et al. who have put the time and energy into that
amazing (and freely available) book.

This text is based on material created by several members of the Principles of Programming and Verification
(POPV) group at Boston University, most notably Ankush Das, Robin Fu, Marco Gaboardi, Assaf Kfoury,
and Hongwei Xi.
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Chapter 1

Introduction

When you write a program in your favorite programming language, you fill a file with characters, typically
by typing on a keyboard. This is one of the beauties of programming: looking past the bells and whistles
provided by IDEs, a program is a stream of characters. At some point in the programming workflow, you
need to verify that what you’ve typed up works as expected, so you run the program. In some cases this
might mean pressing a “play” button, but in many cases it means opening a terminal and typing a few
commands. In either case, you’re running a different program—an interpreter—in order to run the program
you yourself have written. Our goal is to understand: What does an interpreter do? How does it do it, e.g., what
sorts of data structures does it use? Above all, how do we get from a stream of characters representing a program to
its output value?

1.1 The Interpretation Pipeline

Let’s get more concrete. An interpreter is a program that takes as input a stream of characters, along
with additional inputs (e.g., user-provided command line arguments) and produces the output value of the
program represented by the input stream of characters, if the stream of characters does in fact represent a
valid program; the interpreter may choose to report an error otherwise. There several steps to this process
which make up the interpretation pipeline visualized in Figure 1.1. As we will come to understand it, an
interpreter does four things:

1. It attempts to convert the input stream of characters into a stream of tokens by grouping together
related characters. We think of tokens as the units or atoms of our programming langauge This part
interpretation is called lexical analysis, and its primary purpose is to simplify the process of analyzing
the input program. It’s useful, for example, to know whether the character 1 that appears in our
program is part of a number (e.g., 210) or a variable name (e.g., case1). Lexical analysis handles all
these low-level syntactic concerns up front. In analogy with natural language, this is akin to when
your brain combines sequences of sounds or letters into whole words.

2. The interpreter then attempts to convert the stream of tokens into an abstract syntax tree (AST), which
is a representation of our program as hierarchical data. This part of interpretation is called syntactic
analysis or parsing. Hierarchical data is easier to analyze and evaluate, e.g., it’s useful to know
whether a variable x that appear in our program is part of an arithmetic expression (e.g., x + 1) or
part of a new variable declaration (e.g., let x = 1). In analogy with natural language, this is akin to
when your brain combines words into sub-phrases like prepositional phrases and verb phrases.
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stream of characters Lexical Analysis

stream of tokens

Syntactic Analysis (Parsing)

abstract syntax tree (AST)

Semantic Analysis (Type Checking)

well-typed AST/intermediate repr. (IR)

Evaluationinput output

INTERPRETER

Figure 1.1: Visualization of the interpretation pipeline
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3. Not all programs we can write make sense. It doesn’t make sense, for example, to add a number to
a string.1 The next part of interpretation consists of analyzing an AST to verify that everything in it
“looks reasonable”; this is generally called static (semantic) analysis. There are many forms of static
analysis, but the one we’ll focus on is type checking. Types help us describe what kind of things
we’re working with before we run our program. They help us determine before we run our program if
we’re using data correctly. In analogy with natural language, this is akin to the uneasy feeling you get
when you hear or see a sentence like “the happiness is cold”. The word “happiness” isn’t the right
kind of word for its location in the sentence, despite the fact that the sentence is grammatically correct.
Not all languages have type checkers, but we maintain that “good” languages have type checkers.

4. Everything above is in service of running our program. This part of interpretion is called dynamic
(semantic) analysis or evaluation. This is the most intuitive part of an interpreter for programmers;
learning to program is ultimately internalizing the evaluation rules of a programming language, so
that we know what to write to accomplish a certain task.

The about outline should be understood as our roadmap; we will consider each part in turn, and build
several interpreters along the way. For each part, there will be two perspectives: the theoretical perspective
and the practical perspective. For example, the formal counterpart of syntactic analysis is formal grammar
and the practical counterpart is parsing. By the end we hop you’ll have gained an appreciation for the
considerations that go into designing “good” programming languages.

Remark 1.1.1. It should be noted at this point that we will not consider compilation in this text. In
rough terms, compilation is the process of translating a program in one programming language into an
equivalent program in a different programming language. The target language of the translation is often
one that deals with low-level concerns like memory management (e.g., assembly language or LLVM).
We’ll only consider high-level semantics for our programming languages, and when we implement in-
terpreters we’ll work in high-level abstractions using OCaml. If you’re interested in compilers, there are
many great sources, perhaps mostly notably the “dragon book” [1].

1Even though some languages allow you to do this.
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Chapter 2

Inference Systems

The study of programming language theory can be understood in part as the study of inference systems.1

A programming language—in the sense of the techology that we use when we program—is just an imple-
mentation of a collection of inference systems.

We begin with a picture. As we said in Chapter 1, when we program we type a bunch of characters into
a file. Of the sequence of characters we can type, only a handful of them are valid sequences of tokens in our
programming language. For example, let is a keyword of OCaml, 1.223 is a floating point literal, % is an
operator, and yasn3 is a valid variable name. These are all valid tokens in OCaml.2 Furthermore, OCaml
requires that tokens are separated by whitespace, so any whitespace-separated combination of these is a
valid sequence of tokens. But ,,A,, is a meaningless sequences of symbols from OCaml’s perspective, and
cannot appear in a valid sequence of tokens.

Now, of the possible sequences of tokens, only a handful of those constitute well-formed programs. For
example, let f x = x + 2 is a valid OCaml program, whereas let f rec = = is not, though both are
valid sequences of tokens.

Of the well-formed programs, only a handful make sense as programs; said another way, only a handful
are well-typed programs. For example, let rec f x = f x is well-typed, whereas let rec f x = f + x is
not, though both are well-formed programs. And of the well-typed programs, only a handful of those make
sense as computations; said another way, only a handful can be successfully evaluated.

The above observations can be visualized as nested sets (Figure 2.1). Note that things get interesting in
the relationship between well-typed programs and programs that have values. We’ll take this up in-depth
when we cover type systems in Chapter 7.

Our goal is to transform a sequence of characters representing a program into the output value of the
program. This is done by successive transformations, each of which corresponds roughly to one of these
nested sets:

▷ determining valid sequences of tokens in part of lexical analysis;

▷ determining well-formed programs is part of parsing or syntactic analysis;

▷ determining well-typed programs is part of type-checking or static semantic analysis;

▷ determining the value of a program is part of evaluation or dynamic semantic analysis.

1In some settings, these are called formal systems or deductive systems, though it’s my sense that there’s no real consensus as to
what exactly these terms mean.

2We’ll take of the question of what makes a valid token more formally in ??.
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sequences of symbolstwe)((33%# NQE--’:://Uion aPO|?

sequences of tokensrec let x 2 let f x + + y = f

well-formed programslet f x y = 1 + x x + f y in f 2 (-3)

well-typed programs

let rec f x = x > 0 || f x in f 0

let f x y = 1 + x + y in f 2 (-3)

let rec f x = x > 0 || f x in f 1

let f x = x + "two" in 2

2 + "two"

programs with values

Figure 2.1: Visualization of nested classes of programs. In order to make the graphic simpler, the code
examples are actually OCaml expressions, not programs.

And each transformation has a corresponding inference system that formally describes which inputs are
“good” and which are “junk”.

In this chapter we will:

▷ formally define inference rules, i.e, the rules which govern when we can derive new judgments from
judgements we’ve already derived in an inference system;

▷ use derivations to demonstrate that a judgment is derivable in an inference system;

▷ present an extended example which consists of a collection of inference systems that define the syntax,
typing behavior, and evaluation behavior of a simple programming language for a calculator.

2.1 Inference Rules

An inference system is determined by a collection of inference rules. These inference rules describe what
new information we’re allowed to infer given previously inferred information. Inference rules will generally
have the following form.

m is even n = m + 2

n is even
ADDTWO

This inference rule expresses that we can infer a number n is even if we already know that n = m + 2 and
m is even (i.e., if n − 2 is even). We begin by looking at the general anatomy of inference rules.

An inference system is defined over a fixed class of judgments. We think of judgments as the things we
can say while inferring something. Mathematically speaking, judgments can be anything we want, i.e., el-
ements of an arbitrary set. Practically speaking, we’ll always take judgments to be statements parametrized
by some other set.
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Example 2.1.1. If we’re interested in the parity of natural numbers, we may take our set of judgments J
to be all statements of the form

n is even or n is odd

So “7 is even” and “111 is odd” are both judgments in J . Note that statements in J are parametrized
by the set of natural numbers.

We’ll call something like “n is even” a parameterized judgment and something like “4 is even” a concrete
judgment, or just a judgment if it’s clear from context that it’s concrete. In particular, we’ll say “110 is odd”
is an instance of the parameterized judgment “n is odd.”

Remark 2.1.1. We’ll be a bit cavalier about the distinction between parametrized and concrete judgments.
For example, we’ll say that concrete judgments are also parameterized judgments, insofar as they’re
parametrized by no parameters. Likewise, we’ll say that a parameterized judgment is in a set J when
we really mean that its instances are in J .

An inference rule is a way of describing what judgments we’re allowed to infer given we’ve already in-
ferred some other judgments. They also often include additional statements that need to hold in order for
a given rule to be applied; these are called side conditions.3 The following is the general definition of an
inference rule. It’s important that we understand this definition, but not on our first pass; make sure to lean
on the intuitions we’ve been trying to develop here as you work through this chapter, and come back to
this definition potentially several times.

Definition 2.1.1. An inference rule named RULENAME is a nonempty sequence of parameterized judg-
ments J1, . . . Jk, Jk+1 along with a collection of statements S1, . . . , Sl depending on the parameters used in
those judgments. An inference rule is denoted by

J1 . . . Jk S1 . . . Sl

Jk+1
RULENAME

We say that a concrete judgment J′k+1 follows from the concrete judgments J′1, . . . , J′k (by RULENAME) if
J′i is an instance of Ji for each index i and all statements S1, . . . , Sl hold for the parameters used in the
given judgments. We’ll often also denote this by

J′1 . . . J′k
J′k+1

RULENAME

and say that this is an instance of the rule RULENAME. We’ll also call this an inference.

We call the judgments above the line antecedences and the judgment below called the consequent. An
inference rule may have no side-condition or no antecedents. An inference rule with no antecedents is
called an axiom.

3In what follows we highlight side conditions to make clear that they are not formal judgments.
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Example 2.1.2. The inference

10 is even

12 is even
ADDTWO

is an instance of the rule ADDTWO above. In particular, the side condition 12 = 10 + 2 holds. Note that
the side condition is not included in the instance, it’s checked “offline”. Also note that

11 is even

13 is even
ADDTWO

is an instance of ADDTWO. It expresses that, hypothetically, if 11 were even then 13 would be even.

2.2 Derivations

At this point, we can give a basic definition of an inference system.

Definition 2.2.1. An inference system over a set of judgment J is a collection of inference rules over J .

Example 2.2.1. Let J be as in Example 2.1.1. We can consider the inference system given by the following
two inference rules (note that these rules do not say anything about odd numbers).

0 is even
ZERO

m is even n = m + 2

n is even
ADDTWO

What we’re interested in with regard to inference systems is the collection of judgments that are possible to
infer. We make this concrete with the notion of a derivation, which is used to demonstrate that it’s possible
to infer a given judgment in an inference system by invocations of its inference rules (see Appendix A for a
refresher on trees).

Definition 2.2.2. A derivation of the judgment J in an inference system I is a tree T with the following
properties:

▷ The values of T are judgments from J ;

▷ root (T) is J;

▷ For every node of T of the form node(K, T1, . . . , Tl)

root (T1) . . . root (Tl)

K
RULE

is an instance of RULE, where RULE appears in I .

In particular, the leaves of T are instances of axioms in I . It’s in this definition that we see why axioms are
important: without them, our derivations can’t start anywhere. Figure 2.2 has a derivation of the judgment
“8 is even” in the inference system from Example 2.2.1. It’s not a terribly interesting derivation, but it
captures the form of reasoning we’re allowed to do in this system: 8 is even because 6 is even, which holds
because 4 is even, which holds because 2 is even, which holds because 0 is even, which holds by fiat.

10



CHAPTER 2. INFERENCE SYSTEMS CAS CS 320

ZERO
0 is even

ADDTWO2 is even
ADDTWO4 is even
ADDTWO6 is even
ADDTWO8 is even

Figure 2.2: A derivation of “8 is even” in the inference system from Example 2.2.1

ONE
1 is odd

ONE
1 is odd

EVEN
2 is even

ODD
3 is odd

ONE
1 is odd

EVEN
4 is even

ODD
5 is odd

ONE
1 is odd

ONE
1 is odd

EVEN
2 is even

ODD
3 is odd

EVEN
8 is even

Figure 2.3: Derivation of “8 is even” in the inference system from Example 2.2.2

Remark 2.2.1. Even though derivations are trees, we present them bottom-up as stacks of inferences.
This is, in part, because it captures the structure of a derivation more naturally, but it’s also historical:
Gerhard Gentzen established much of the notation we use here (and in the mathematical field called
proof theory) in the 1930s [2].

Example 2.2.2. Let’s consider a slightly more interesting inference system. We can define an alternative
system for parity reasoning which takes advantage of what we know about odd numbers.

0 is even
ZERO

1 is odd
ONE

m is even n = m + 1

n is odd
ODD

m is odd n is odd k = m + n

k is even
EVEN

Figure 2.3 is a derivation of “8 is even” is this alternative system. The primary takeaway: different in-
ference systems provide us with different forms of reasoning. In this alternative system, we have to first
separate 8 into two summands and reason about them separately. This system also differs from the one in
Example 2.2.1 because a judgment may have multiple proofs.

Exercise 2.2.1. Give another derivation of “8 is even” in this system from Example 2.2.2.

Exercise 2.2.2. (Challenge) Prove that “n is even” is derivable in the system from Example 2.2.1 if and
only if it’s derivable in the system from Example 2.2.2.
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<expr> ::= ( + <expr> <expr> )

| ( * <expr> <expr> )

| ( = <expr> <expr> )

| ( ? <expr> <expr> <expr> )

| 0 | 1

Figure 2.4: Lisp-like syntax for a simple calculator

2.3 Extended Example: Calculator

We now consider several inference systems defined over judgments about expressions for a calculator with
lisp-like syntax. This syntax will only allow for 8 possible tokens: (, ), +, *, =, ?, 0, and 1. Anticipating
the next chapter, the formal grammar for such expressions is give in Figure 2.4. You’re not expected to
understand this specification; it’s just meant to give a hint of what is to come.

We begin by defining an inference system that determines which sequences of tokens constitute well-
formed expressions (Figure 2.5).4 This system is defined over judgments of the form “e ∈ WF” where e is a
sequence of tokens. It captures in its inference rules that operators appear before their arguments, and that
all invocations of an operator are surrounded in parentheses, e.g.,

( * ( + 1 1 ) ( + 1 1 ) )

is a well-formed expression, and we can derive this judgment formally (Figure 2.6). Let’s take a brief
moment to read what each of these rules says.

▷ ZEROS says that 0 is a well-formed expression, no matter what.

▷ ONES says that 1 is a well-formed expression, no matter what.

▷ ADDS says that that if e1 and e2 are well-formed expressions, then so is ( + e1 e2 ).

▷ MULS says that that if e1 and e2 are well-formed expressions, then so is ( * e1 e2 ).

▷ EQS says that that if e1 and e2 are well-formed expressions, then so is ( = e1 e2 ).

▷ CONDS says that that if e1, e2, and e3 are well-formed expressions, then so is ( ? e1 e2 e3 ).

We cannot stress this enough: inference rules are formal shorthand for expressing rules which can also be expressed
in natural language. The natural language descriptions above may at first seem a lot easier to read. But over
time, as you learn to read inference rules, you’ll find that they are much more convenient, especially when
the inference system has 50 (or even 500) rules.

Exercise 2.3.1. Show that ( = ( = 0 0 ) 1 ) ∈ WF by deriving it in the inference system from Fig-
ure 2.5.

4The astute reader might notice that we’re skipping lexical analysis. This is partly for simplicity, but it’s also because all our tokens
are exactly one character long, and so, barring issues of whitespace for now, any sequence of valid characters constitutes a valid
sequence of tokens.
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0 ∈ WF
ZEROS

1 ∈ WF
ONES

e1 ∈ WF e2 ∈ WF

( + e1 e2 ) ∈ WF
ADDS

e1 ∈ WF e2 ∈ WF

( * e1 e2 ) ∈ WF
MULS

e1 ∈ WF e2 ∈ WF

( = e1 e2 ) ∈ WF
EQS

e1 ∈ WF e2 ∈ WF e3 ∈ WF

( ? e1 e2 e3 ) ∈ WF
CONDS

Figure 2.5: Inference systems for well-formed expressions in the language from Figure 2.4

ONES
1 ∈ WF

ONES
1 ∈ WF

ADDS
( + 1 1 ) ∈ WF

ONES
1 ∈ WF

ONES
1 ∈ WF

ADDS
( + 1 1 ) ∈ WF

MULS
( * ( + 1 1 ) ( + 1 1 ) ) ∈ WF

Figure 2.6: Derivation of “( * ( + 1 1 ) ( + 1 1 ) ) ∈ WF” in the system from Figure 2.5.

Remark 2.3.1. Keep in mind that these expressions don’t mean anything yet, even though we can guess
that “+” will stand for addition and “*” will stand for multiplication. The expression

( + ( = 1 1 ) ( = 0 1 ) )

is also a well-formed expression, even though this may not make sense if we interpret “=” as an equality
operator which evalutes to a Boolean value.

Once we’ve defined the well-formed expressions using an inference system, we can prove things about
well-formed expressions using induction on derivations (see Appendix A).

Exercise 2.3.2. Prove using induction on derivations that if e ∈ WF, then there are the same number of
left parentheses as right parentheses in e.

In addition to proving things via structural induction, we can also define properties on well-formed expres-
sions by defining new inference systems. In particular, we can use the notion of a well-formed expression
in other inference systems.

Suppose, for example, we want to reason about how many symbols are in a given well-formed expres-
sion. We can define an inference system to do this sort of reasoning (Figure 2.7). This system is defined over
judgments of the form “#(e) = n” where e ranges over well-formed expressions (i.e., we can derive “e ∈ WF”
in the previously defined inference system) and n ranges over natural numbers. The rules in this system
express that 0 and 1 have 1 symbol, and every other expression has 3 plus [the number of symbols in its
subexpressions] many symbols. We can formally derive that the expression

( * ( + 1 1 ) ( + 1 1 ) )

has 13 symbols (Figure 2.8).

13
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#(0) = 1
ZEROC

#(1) = 1
ONEC

#(e1) = m #(e2) = n k = m + n + 3
#(( + e1 e2 )) = k

ADDC

#(e1) = m #(e2) = n k = m + n + 3
#(( * e1 e2 )) = k

MULC
#(e1) = m #(e2) = n k = m + n + 3

#(( = e1 e2 )) = k
EQC

#(e1) = l #(e2) = m #(e3) = n k = l + m + n + 3
#(( ? e1 e2 e3 )) = k

CONDC

Figure 2.7: Inference system for determining the number of symbols in a well-formed expression

ONEC
#(1) = 1

ONEC
#(1) = 1

ADDC
#(( + 1 1 )) = 5

ONEC
#(1) = 1

ONEC
#(1) = 1

ADDC
#(( + 1 1 )) = 5

MULC
#(( * ( + 1 1 ) ( + 1 1 ) )) = 13

Figure 2.8: Derivation of “#(( * ( + 1 1 ) ( + 1 1 ) )) = 13” in the system from Figure 2.7

Exercise 2.3.3. Show that #(( = ( = 0 0 ) 1 )) = 9 by deriving of it in the inference system from
Figure 2.7.

We’d like to now start thinking about the meaning of these expressions. First, we have to contend with
the fact that not all well-formed expressions are meaningful. The expression ( = ( = 0 0 ) 1 ) cannot
be evaluated successfully because it would require us to compare two values that aren’t the “same kind of
thing”. Formally, the “kind of thing” a value can be is called its type. There are two types of values that an
expression can evaluate to in our calculator language: a number (int) or a Boolean value (bool).

Remark 2.3.2. It would be possible to represent Boolean values as numbers; this is done, for example, in
C. Then there would be a single type of value in our lanugage. We’ll avoid doing this, in part because
it makes our example less interesting, but also because there are some serious problems that arise when
we design programming languages this way.

We can define an inference system which determines the type of an expression, if it has one. This means
that the system has two purposes: (1) it delineates a set of expressions that have values (i.e., which we can
evaluate), and (2) it determines the type of that value before we’ve evaluated the expression (Figure 2.9).

This system is defined over judgments of the form “e : t” where e is a well-formed expression and t is
either int or bool. We read a judgment of this form as “e is of type t” or “e is a t”. Let’s again take a brief
moment to read what each of these rules says.

▷ ZEROT says 0 is a int, no matter what.

▷ ONET says 1 is a int, no matter what.

▷ ADDT says if e1 is a int (i.e., evaluates to a number) and e2 is a int, then ( + e1 e2 ) is a int. In
particular, we can only add numbers, not Boolean values.
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0 : int
ZEROT

1 : int
ONET

e1 : int e2 : int
( + e1 e2 ) : int

ADDT
e1 : int e2 : int
( * e1 e2 ) : int

MULT

e1 : t1 e2 : t2 t1 = t2

( = e1 e2 ) : bool
EQT

e1 : bool e2 : t2 e3 : t3 t2 = t3

( ? e1 e2 e3 ) : t2
CONDT

Figure 2.9: Inference system for determining the type of an expression

ONET
1 : int ONET

1 : int
EQT

( = 1 1 ) : bool

ONET
1 : int ONET

1 : int
ADDT

( + 1 1 ) : int

ONET
1 : int ZEROT

0 : int
MULT

( * 1 0 ) : int
CONDT

( ? ( = 1 1 ) ( + 1 1 ) ( * 1 0 ) ) : int

Figure 2.10: Derivation of “( ? ( = 1 1) ( + 1 1 ) ( * 1 0 ) ) : int” in the system from Fig-
ure 2.9

▷ MULT says if e1 is a int (i.e., evaluates to a number) and e2 is a int, then ( * e1 e2 ) is a int. In
particular, we can only multiply numbers, not Boolean values.

▷ EQT says if e1 and e2 are the same type then we can compare them, and ( = e1 e2 ) is a bool. In
particular, we can’t compare a number with a Boolean value.

▷ CONDT says if e1 is a bool, and e2 and e3 are the same type, then we can condition on the value of e1

to get either the value of e2 or e3, and the type of ( ? e1 e2 e3 ) is the same as that of e2 and e3.

See Figure 2.10 for an example derivation in this system.

Exercise 2.3.4. Show that ( = ( + 0 0 ) 1 ) : bool by deriving it in the inference system from Fig-
ure 2.9.

Finally, we can define an inference system for determining the value of an expression in our language
(Figure 2.11). This system is defined over judgments of the form “e ⇓ v”, which we read as “e evaluates
to v” where e ranges over well-formed expressions, and v ranges over numbers (N) or Boolean values
({true, false}). Let’s on last time take a moment to read what each of these rules says.

▷ ZEROE says 0 evaluates to the number 0.

▷ ONEE says 1 evaluates to the number 1.

▷ ADDE says if e1 evaluates to m and e2 evaluates to n, then ( + e1 e2 ) evaluates to m + n.

▷ MULE says if e1 evaluates to m and e2 evaluates to n, then ( * e1 e2 ) evaluates to m × n.

▷ EQTRUEE says if e1 evaluates to v1 and e2 evaluates to v2, and v1 and v2 are the same then ( = e1 e2 )

evaluates to true.

▷ EQFALSEE says if e1 evaluates to v1 and e2 evaluates to v2, and v1 and v2 are not the same then ( = e1 e2 )

evaluates to false.

15
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0 ⇓ 0
ZEROE

1 ⇓ 1
ONEE

e1 ⇓ v1 e2 ⇓ v2 v = v1 + v2

( + e1 e2 ) ⇓ v
ADDE

e1 ⇓ v1 e2 ⇓ v2 v = v1 × v2

( * e1 e2 ) ⇓ v
MULE

e1 ⇓ v1 e2 ⇓ v2 v1 = v2

( = e1 e2 ) ⇓ true
EQTRUE

e1 ⇓ v1 e2 ⇓ v2 v1 ̸= v2

( = e1 e2 ) ⇓ false
EQFALSE

e1 ⇓ true e2 ⇓ v
( ? e1 e2 e3 ) ⇓ v

IFTRUE

e1 ⇓ false 32 ⇓ v
( ? e1 e2 e3 ) ⇓ v

IFTRUE

Figure 2.11: Inference system for determine the values of well-formed expressions

ONEE
1 ⇓ 1

ONEE
1 ⇓ 1

ADDE
( + 1 1 ) ⇓ 2

ONEE
1 ⇓ 1

ONEE
1 ⇓ 1

ADDE
( + 1 1 ) ⇓ 2

MULE
( * ( + 1 1 ) ( + 1 1 ) ) ⇓ 4

Figure 2.12: Derivation of “( * ( + 1 1 ) ( + 1 1 ) ) ⇓ 4” in the system from Figure 2.11

▷ IFTRUEE says if e1 evaluates to true and e2 evaluates to v, then ( ? e1 e2 e3 ) evaluates to v. In particular,
e3 does not need to be evaluated.

▷ IFFALSEE says if e1 evaluates to true and e3 evaluates to v, then ( ? e1 e2 e3 ) evaluates to v. In
particular, e2 does not need to be evaluated.

See Figure 2.12 for an example derivation in this system. Notice that the side conditions are where the
“real” computation happens, e.g., the (add) rule draws a correspondence between the + operator in our
language and normal addition “+” in the side condition.

Exercise 2.3.5. Determine the value v such that (= (+ 0 1) 1) ⇓ v and derive this judgment in the
system from Figure 2.11.

There is quite a bit more we could say here. For example, this system exhibits type safety: for any expres-
sion e, if there is a type t such that e : t, then there is a value v such that e ⇓ v and v is of type t. We’ll come
back to this later. The purpose of this presentation is primarily to offer examples of inferences systems like
the ones on which we’ll focus for the remainder of the text. We defer more careful considerations to those
later chapters.

2.4 Additional Exercises
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Chapter 3

Formal Grammar

Most people are familiar with grammar in the context of natural language. In English class, for example,
we might learn that we shouldn’t end a sentence with a preposition. This is a grammatical rule of English.
In broad strokes, grammar refers to the rules that govern what constitutes a well-formed sentence in a
languange. It’s the concern of grammar to determine that “I taught the car in the refrigerator” is well-
formed, whereas “I car teach refrigerator in there” is not. It’s not the concern of grammar to determine that
the first sentence, despite being grammatically correct, has no reasonable interpretation in English.

The grammar of a programming language determines what constitutes a well-formed program in that
language. Due to the precision of programming languages, these tend to be called formal grammars. In
OCaml, the program:

let f x = x + 1

is well-formed, but the program:

f let x = x 1 +

is not. As with natural language, the grammar of a programming language is not concerned with the
meaning of programs, just their well-formedness, e.g., the program:

let omega x = x x

is well-formed, but isn’t well-typed.
A good programming language has a clear specification of its grammar. The grammar of OCaml, for

example, is given in its entirety in The OCaml Manual. After going though this chapter, you should be able
to read the specification given there.1

3.1 A Thought Experiment

How do we know that a sentence is grammatically correct? Let’s try to break down the cognitive process
of this determination. Consider the following English sentence.

the cow jumped over the moon

1In order to not be entirely biased, I’ll note that Python also has a complete specification of its grammar in The Python Manual.
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We might first recognize that each word is a particular part of speech (noun, verb, preposition, etc.) and
that, with regards to grammar, only the part of speech counts; that is, it doesn’t matter what noun we use, just
that we use a noun in the correct position in our sentence. We represent this step of the cognitive process
by replacing each word with an abstract symbol that stands in for its part of speech.

<article> <noun> <verb> <prep> <article> <noun>

After this, there are some familiar patterns: <article> <noun> is the determination or quantification of an
object, e.g., “the house” or “a car.” In other words, this pattern represents a noun phrase or nominal phrase.
We mentally group these forms, and this group can be represented by a new symbol.

<noun-phrase> <verb> <prep> <noun-phrase>

Another pattern we might recognize: a proposition followed by a noun phrase is a single unit, e.g., “over
the moon”, “through the woods”, or “behind the wall.” These are called prepositional phrases and can, again,
be represented by a new symbol.

<noun-phrase> <verb> <prep-phrase>

Prepositional phrases modify verbs, creating a verb phrase (e.g., “ran to the car”) leaving us with something
like:

<noun-phrase> <verb-phrase>

which we should finally recognized as the canonical structure of a well-formed sentence: thing does.
The point of this thought experiment is to emphasize the following: there are general structures that are

allowed by a grammar, and these structures can be instantiated at particular words in the language. The
rules that define these structures are often heirarchical; a sentence is made of parts (e.g, a noun phrase and
a verb phrase) and those constituent parts are made of smaller parts (e.g., an article and a noun) and so on
until we reach units of our language, the particular words. Demonstrating that a sentence is grammatically
correct means demonstrating that it fits into this heirarchy of allowed structures.

Next, an observation: if we reverse the order of steps we took above, and break up some of the steps
we did in parallel, we get a proof that our sentence is grammatically correct (Figure 3.1). We call this a
derivation. Each line corresponds to the application of a grammatical rule. For example, the fourth line
follows from the third by way of applying the grammatical rule that a prepositional phrase can be made
up of a preposition followed by a verb phrase. But more importantly, if we squint, we can start to see the
tree-like hierarchical structure embodied in this derivation, a structure we call a parse tree (Figure 3.2).

3.2 Backus-Naur Form

A formal grammar is defined over a fixed collection of symbols. This collection is divided into two dis-
joint groups: the terminal symbols and the non-terminal symbols. We denote nonterminal symbols using
notation of the form <non-terminal>. We denote terminal symbols in red typewriter font, e.g., terminal.

Remark 3.2.1. We almost never state outright what our underlying symbols are. We can determine the
terminal and non-terminal symbols of a grammar by looking at its specification, assuming that every
symbol must appear at least once in the specification.
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<sentence>

<noun-phrase> <verb-phrase>

<noun-phrase> <verb> <prep-phrase>

<noun-phrase> <verb> <prep> <noun-phrase>

<noun-phrase> <verb> <prep> <article> <noun>

<article> <noun> <verb> <prep> <article> <noun>

the <noun> <verb> <prep> <article> <noun>

the cow <verb> <prep> <article> <noun>

the cow jumped <prep> <article> <noun>

the cow jumped over <article> <noun>

the cow jumped over the <noun>

the cow jumped over the moon

Figure 3.1: Derivation of the cow jumped over the moon in the grammar in Figure 3.3

<sentence>

<noun-phrase>

<article>

the

<noun>

cow

<verb-phrase>

<verb>

jumped

<prep-phrase>

<prep>

over

<noun-phrase>

<article>

the

<noun>

moon

Figure 3.2: Parse tree for the cow jumped over the moon in the grammar in Figure 3.3
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In the derivation in Figure 3.1, we built a sequence of not-quite sentences, until the very last one, which
was the sentence we wanted to prove grammatically correct. These possibly-not-quite sentences are called
sentential forms.

Definition 3.2.1. A sentential form is a sequence of symbols (terminal or non-terminal). A sentence is a
sequence of terminal symbols. We will use the symbol ε to refer to the empty sentential form.

Remark 3.2.2. We denote sentential forms using whitespace as a delimiter. But it’s important to recognize
that this is just notation. We’re not interested in low-level concerns like whitespace when studying formal
grammar. It may be useful to think of a sentential form as a list of symbols.

Example 3.2.1. The following are sentential forms that appear above:

<sentence>

<noun-phrase> <verb> <prep> <article> <noun>

the cow jumped over the moon

but only the last one is a sentence.

In the process of constructing sentential forms, we replaced a non-terminal symbol with a sentential form,
e.g., we replaced <noun-phrase> with <article> <noun>. These replacements are specified using production
rules.

Definition 3.2.2. A production rule is a nonterminal symbol together with a sentential form. Production
rules are denoted using equations of the form

<non-terminal> ::= SENTENTIAL-FORM

where the left-hand side is the nonterminal symbol and the right-hand side is the sentential form.

We read a production rule as: “the non-terminal symbol on the left-hand side can be replaced with the
sentential form on the right hand side.”

Example 3.2.2. We can express that a prepositional phrase can be made up of a preposition followed by
a noun-phrase using the following production rule:

<prep-phrase> ::= <prep> <noun-phrase>

Backus-Naur Form (BNF) specifications are used to describe context-free grammars, which form a class
of formal grammars that are expressive enough to capture the syntax of programming languages. A BNF
grammar is determined by what replacements we’re allowed to perform and what kind of things we’re
trying to derive.

Definition 3.2.3. A Backus-Naur Form (BNF) specification is a collection of production rules, together
with a designated symbol called the starting symbol. If the start symbols is not explicitely given, it is
taken to be the left-hand side of the first rule appearing in the specification.
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<sentence> ::= <noun-phrase> <verb-phrase>

<verb-phrase> ::= <verb> <prep-phrase>

<verb-phrase> ::= <verb>

<prep-phrase> ::= <prep> <noun-phrase>

<noun-phrase> ::= <article> <noun>

<article> ::= the

<noun> ::= cow

<noun> ::= moon

<verb> ::= jumped

<prep> ::= over

Figure 3.3: BNF specification for a simple grammar based on English

Example 3.2.3. Figure 3.3 has a BNF specification for the underlying grammar of the previous section.
The nonterminal symbols of this grammar are: <sentence>, <noun-phrase>, <verb-phrase>, <verb>, <prep>,
<prep-phrase>, <article>, and <noun>. The terminal symbols of this grammar are: the, cow, moon,jumped,
and over. The nonterminal symbol <sentence> is our starting symbol (because it appears as the left-hand
side of the first rule). This is, of course, not a complete or accurate model of English grammar (such a
model would be incredibly complicated).

Remark 3.2.3. John Backus and Peter Naur are computer scientists who formalized this meta-syntax in
the process of developing and implementing the programming language ALGOL 60.

As Figure 3.3 indicates, it’s possible for a nonterminal symbol to have multiple associated production rules.
This is very common so it has it’s own syntax.

Definition 3.2.4. We write

<non-terminal> ::= SENTENTIAL-FORM1 | . . . | SENTENTIAL-FORMk

as shorthand for

<non-terminal> ::= SENTENTIAL-FORM1

...

<non-terminal> ::= SENTENTIAL-FORMk

The multiple forms of a given nonterminal symbol are often called alternatives, and this shorthand is
often called alternative syntax.

It’s not difficult to rewrite the grammar in Figure 3.3 using alternative syntax (Figure 3.4). The last piece of
our thought experiment that we need to formalize is the proof of grammatical correctness.
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<sentence> ::= <noun-phrase> <verb-phrase>

<verb-phrase> ::= <verb> <prep-phrase> | <verb>
<prep-phrase> ::= <prep> <noun-phrase>

<noun-phrase> ::= <article> <noun>

<article> ::= the

<noun> ::= cow | moon
<verb> ::= jumped

<prep> ::= over

Figure 3.4: The grammar in Figure 3.3 rewritten with alternative syntax

Definition 3.2.5. A derivation of a sentence S in a BNF grammar G is a sequence of sentential forms
S1, . . . , Sk with the following properties:

▷ S1 is the starting symbol of G;

▷ Sk = S;

▷ for every index i satisfying i > 1, the sentential form Si is the result of replacing a single nontermi-
nal symbol in Si−1 with a sentential form, according to a production rule of G.

We say that a grammar recognizes a sentence S if there is a derivation of S in the grammar.

Example 3.2.4. The derivation in Figure 3.1 is a derivation is the sense of Definition 3.2.5. We can also
derive the sentence the moon jumped as follows:

<sentence>

<noun-phrase> <verb-phrase>

<article> <noun> <verb-phrase>

the <noun> <verb-phrase>

the moon <verb-phrase>

the moon <verb>

the moon jumped

Exercise 3.2.1. For the derivation in Example 3.2.4, determine which production rule is applied in each
line of the derivation.

A sentence is not guaranteed to have a unique derivation, but there a form of derivation we’ll single out for
reasons which will become more clear at the end of this section.

Definition 3.2.6. A leftmost derivation is one in which the leftmost nonterminal symbol is expanded in
each step.
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The derivation given Example 3.2.4 is a leftmost derivation, whereas the derivation in Figure 3.1 is not.

Exercise 3.2.2. Write a leftmost derivation of the sentence

the cow jumped over the moon

in the grammar in Figure 3.3.

The theme of this section has been that grammars imbue sentences with hierarchical structure. We represent
this hierarchical structure using parse trees.

Definition 3.2.7. A parse tree for a sentence S recognized by a grammar G is a tree T with the following
properties:

▷ The values of T are symbols of G;

▷ root (T) is the starting symbol of G;

▷ For every node of T of the form node(s, T1, . . . , Tk)

s ::= root (T1) . . . root (Tk)

is a production rule of G;

▷ The terminal symbols at the leaves of T, in order from left to right form the sentence S.

Note that the value at a leaf l may be a nonterminal symbol in the case that

root (l) ::= ε

is a production rule of G.

Example 3.2.5. The tree in Figure 3.2 is a parse tree in the sense of . The following is a parse tree for the
sentence the moon jumped in the same grammar:

<sentence>

<noun-phrase>

<article>

the

<noun>

moon

<verb-phrase>

<verb>

jumped

If a sentence S has a derivation in a grammar G, then it also has a parse tree, and vice versa. Multiple
derivations may correspond to the same parse tree, but to every parse tree there is a unique corresponding
leftmost derivation; a leftmost derivation corresponds to a pre-order traversal of a parse tree.

Theorem 3.2.1. There is a one-to-one correspondence between parse trees and leftmost derivations. In
particular, a sentence S has exactly one parse tree in G if and only if it has a exactly one leftmost deriva-
tion in G.
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<program> ::= <stmts>

<stmts> ::= ε | <stmt> ; <stmts>

<stmt> ::= <var> = <expr>

<expr> ::= <term> | <term> + <term> | <term> - <term>

<term> ::= <var> | <num>

<num> ::= 1 | 2 | 3
<var> ::= a | b | c | d

Figure 3.5: BNF specification for a toy imperative programming language

Exercise 3.2.3. (Challenge) Prove Theorem 3.2.1.

Remark 3.2.4. In addition to context-free grammars, there are also context-sensitive grammars. For
context-sensitive grammars, production rules can transform sequences of symbols, i.e., the left-hand side
of a production rule is not required to be a single nonterminal symbol.

3.3 Examples

Despite all the abstractions and formalisms, formal grammars are suppose to be fairly straigtfoward. The
easiest way to grok them is by example. In this section, we’ll look at a couple more complicated examples
based on programming languages.

An Imperative Language

Figure 3.5 has a BNF specification for a toy imperative programming language which, in essense, consists
of what are called straight-line programs. In English, we would read this specification as:

▷ a program is made up of statements;

▷ a collection of statements is empty or is a single statement, followed a semicolon, followed by a collec-
tion of statements;

▷ a statement is a variable, followed by an equals sign, followed by a expression;

▷ and so on. . .

The second rule highlights an interesting feature of BNF specifications: production rules are allowed to be
recursive. The production rule for <stmts> allows us to expand <stmts> to a sentential form that contains the
non-terminal symbol <stmts>. This means the above grammar recognizes infinitely many sentences.

Consider the following program in this language.

a = 1;

a = a + 2;

b = a;
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<program>

<stmts>

<stmt> ; <stmts>

<var> = <expr> ; <stmts>

a = <expr> ; <stmts>

a = <term> ; <stmts>

a = <num> ; <stmts>

a = 1 ; <stmts>

a = 1 ; <stmt> ; <stmts>

a = 1 ; <var> = <expr> ; <stmts>

a = 1 ; a = <expr> ; <stmts>

a = 1 ; a = <term> + <term> ; <stmts>

a = 1 ; a = <var> + <term> ; <stmts>

a = 1 ; a = a + <term> ; <stmts>

a = 1 ; a = a + <num> ; <stmts>

a = 1 ; a = a + 2 ; <stmts>

a = 1 ; a = a + 2 ; <stmt> ; <stmts>

a = 1 ; a = a + 2 ; <var> = <expr> ; <stmts>

a = 1 ; a = a + 2 ; b = <expr> ; <stmts>

a = 1 ; a = a + 2 ; b = <term> ; <stmts>

a = 1 ; a = a + 2 ; b = <var> ; <stmts>

a = 1 ; a = a + 2 ; b = a ; <stmts>

a = 1 ; a = a + 2 ; b = a ;

Figure 3.6: Example derivation in the grammar in Figure 3.5

To verify that this program is recognized by the above grammar, we can write a (leftmost) derivation of it
(Figure 3.6).

Remark 3.3.1. As a reminder, we’re not interested in low-level syntactic concerns like whitespace when
we consider whether or not a sentence is recognized by a grammar. The choice to present the program
above in three lines was for readability, and the choice to present it in a single line in the derivation was
for convenience.

Alternatively, we could construct a parse for the given program (Figure 3.7).

Exercise 3.3.1. Verify that

a = a + a;

b = b;

is recognized by the above grammar by giving both a derivation and a parse tree.
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<program>

<stmts>

<stmt>

<var>

a

= <expr>

<term>

<num>

1

; <stmts>

<stmt>

<var>

a

= <expr>

<term>

<var>

a

+ <term>

<num>

2

; <stmts>

<stmt>

<var>

b

= <expr>

<term>

<var>

a

; <stmts>

Figure 3.7: Example parse tree for the grammar in Figure 3.5.

<expr> ::= <num> | <expr> <op> <expr> | ( <expr> )
<op> ::= + | - | * | /

<num> ::= 1 | 2 | 3

Figure 3.8: First attempt at a BNF specification for arithmetic expressions

Arithmetic Expressions

Figure 3.8 has a first attempt at a BNF specification for arithmetic expressions.

Exercise 3.3.2. Give a derivation and parse tree for the following sentence:

( 1 + 2 ) * 3

using the grammar in Figure 3.8.

This grammar seems, ignoring obvious issues like having only three possible numbers, to be a reasonable
enough specification: an expression is either a number or a pair of expressions with an operator between
them. Note that the recursive nature of the first production rule means that this grammar recognizes in-
finitely many sentences. But this grammar has a curious feature: there are sentences which have multiple
parse trees. Consider the sentence 1 - 2 - 3. One the one hand, we might thing that this expression says
“subtract 2 from 1, and then subtract 3.” This reading is witnessed by the following parse tree:
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<expr>

<expr>

<expr>

<num>

1

<op>

-

<expr>

<num>

2

<op>

-

<expr>

<num>

3

But there’s nothing in the structure of the expression itself which keeps us from intepreting it as “subtract
from 1 the result of subtracting 3 from 2” which is witnessed by this alternative parse tree:

<expr>

<expr>

<num>

1

<op>

-

<expr>

<expr>

<num>

2

<op>

-

<expr>

<num>

3

This ambiguity matters for the design of programming languages because it can change the meaning of the
program itself; the first reading gives us the value −4 whereas the latter gives us 2. If we want to allow
the programmer to write down an expression like 1 - 2 - 3, then we have to be clear about what the
intended ouput should be. More generally, we’d like to ensure that our grammar is unambiguous so there’s
no question as to how to read what the programmer has written. This will be our focus for the next section.

Remark 3.3.2. Before moving forward, I’d like to point out that BNF specifications are formal systems,
as introduced in the previous chapter, written in an alternative form. From this perspective, judgments
are of the form “S ∈ <non-terminal>”, where S is a sentence. We read a judgment as “the sentence S is
a <non-terminal>.” Non-terminal symbols thus define categories of sentences. Production rules define
inference rules, which inform how sentences can be combined to produce new sentences of a given
category. We won’t make this formal, but will point to Figure 3.10 for the grammar in Figure 3.8 written
as a formal system. Note also in the derivation in Figure 3.10 is, up to minor differences is labels, the
same as a parse tree drawn (upside down) in derivation tree form.

3.4 Grammatical Ambiguity

As participants of language, we are no strangers to grammatical ambiguity. Take, for instance, the following
sentence:2

John saw the man on the mountain with the telescope

2This example is taken from the Wikipedia page on Syntactic ambiguity.
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(one)
1 ∈ <num>

(two)
2 ∈ <num>

(three)
3 ∈ <num>

(add)
+ ∈ <op>

(sub)
- ∈ <op>

(mul)
* ∈ <op>

(div)
/ ∈ <op>

S ∈ <num> (num)
S ∈ <expr>

S ∈ <expr>
(paren)

S ∈ ( <expr> )

S1 ∈ <expr> S2 ∈ <op> S3 ∈ <expr>
(op)

S1 S2 S3 ∈ <expr>

Figure 3.9: Formal system for the grammar in Figure 3.8

1 ∈ <num>
1 ∈ <expr> - ∈ <op>

2 ∈ <num>
2 ∈ <expr>

1 - 2 ∈ <expr> - ∈ <op>
3 ∈ <num>
3 ∈ <expr>

1 - 2 - 3 ∈ <expr>

Figure 3.10: A derivation tree proving the recognition of 1 - 2 - 3 using the inference rules in
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<s>

<np>

<n>

John

<vp>

<vp>

<v>

saw

<np>

<np>

<a>

the

<n>

man

<pp>

<p>

on

<np>

<a>

the

<n>

mountain

<pp>

<p>

with

<np>

<a>

the

<n>

telescope

Figure 3.11: Parse tree of an ambiguous sentence for the grammar in Figure 3.13

Was John using the telescope to see the man on the mountain? Was the man carrying the telescope? Are
there multiple mountains, one of which has a telescope on it? The ambiguity comes from it not being
clear which hierarchical structure should scaffold the sentence. Figure 3.11 has one possible parse tree for
this sentence in grammar based on English (Figure 3.13). The prepositional phrase “with the telescope” is
grouped with the verb phrase starting with “saw”, indicating that John was using the telescope. Figure 3.12
has an alternative parse tree for the same sentence. For this parse tree, the prepositional phrase “with
the telescope” is grouped with the noun phrase “the mountain” indicating that there is a telescope on the
mountain itself.

Remark 3.4.1. We experience language in a linear fashion, either by reading it or hearing it. Ifn our
interlocutor could display the parse tree of their statement (floating eerily in space before our eyes) there
would be nothing to say of (grammatical) ambiguity.

In another light, grammatical ambiguity is related to parentheses. If it were standard practice to use
parentheses in natural language, we could avoid some grammatical ambiguity. For example, the parse
tree in Figure 3.11 corresponds to:

John saw ( the man on the mountain ) with the telescope

whereas the parse tree in Figure 3.12 corresponds to:

John saw the man on ( the mountain with the telescope )

Ambiguity in natural language is a complex topic, but restricted to formal grammars, ambiguity is a well-
defined notion.

Definition 3.4.1. A grammar is ambiguous if it recognizes a sentence with (at least) two distinct parse
trees. Equivalently, it is ambiguous if it recognizes a sentence with (at least) two distinct leftmost deriva-
tions.
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<s>

<np>

<n>

John

<vp>

<v>

saw

<np>

<np>

<a>

the

<n>

man

<pp>

<p>

on

<np>

<np>

<a>

the

<n>

mountain

<pp>

<p>

with

<np>

<a>

the

<n>

telescope

Figure 3.12: Another parse tree of an ambiguous sentence for the grammar in Figure 3.13.

Example 3.4.1. The grammar in Figure 3.13 is ambiguous. That is, in this grammar, our ambiguous
sentence has multiple parse trees. Equivalently, by Theorem 3.2.1, it has multiple leftmost derivations.
The grammar in Figure 3.8 is also ambiguous by virtue of the examples given in the previous section.

Exercise 3.4.1. Give a third distinct parse tree for the “John” sentence.

Exercise 3.4.2. Give two (or three) leftmost derivations of the “John” sentence.

Remark 3.4.2. In the previous example, along with many of the examples we’ll see, it’ll be fairly obvious
that the grammar is ambiguous. As computer scientists, we might think that we could write program
to determine if a grammar is ambiguous. Unfortunately, this is impossible (not just very difficult, but
impossible). Formally speaking, this is to say that determining if a context-free grammar is ambiguous is
undecidable [?].

Our next task it to determine how to avoid grammatical ambiguity when possible. But first, why should we
care? Natural language is ambiguous and we get along perfectly fine, so why should we go through the
trouble of making sure grammars we design for programming languages are unambiguous? The way I
see it, it’s a promise that to a programmer: we never make unspoken assumptions about what you meant when
we read your program. We try to do this with natural language too, but in communication, if a statement is
ambiguous, we can usually just ask our interlocutor what they meant. We can’t do this for a program, so
instead we make it impossible for a sentence to have multiple readings.3

3We see a similar phenomena in legal language, which tends to be grammatically sterile, and no fun to read.
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<s> ::= <np> <vp>

<vp> ::= <v> | <v> <np> | <vp> <pp>
<np> ::= <n> | <a> <n> | <np> <pp>
<n> ::= John | man | mountain | telescope
<v> ::= saw

<a> ::= the

<p> ::= on | with

Figure 3.13: BNF grammar that recognizes the ambiguous sentence in this section.

<expr> ::= <num> | <op> <expr> <expr>
<op> ::= + | - | * | /

<num> ::= 1 | 2 | 3

Figure 3.14: BNF specification for arithmetic expressions in Polish Notation

3.4.1 Fixity

If our only concern is avoiding ambiguity, we can do so by making sure operators appear before all their
arguments. Figure 3.14 has a such a grammar for arithmetic expressions. This is called Polish notation,
and always yields an unambiguous grammar, and without any need for parentheses.

It’s not difficult to then guess what reverse polish notation is: operators appear after their arguments.
This is how early calculators like the HP 9100A Desktop Calculator were designed. If you wanted to calcu-
late something like (2 + 3) * (4 - 5), you would push the operands onto a stack and then apply opera-
tors to the top elements of the stack:

∅ 2−−→ [2] 3−−→ [2, 3] +−−→ [5] 4−−→ [5, 4] 5−−→ [5, 4, 5] -−−→ [5,−1] *−−→ [−5]

so that the expression you typed was in reverse Polish notation, in this case:

2 3 + 4 5 - *.

Exercise 3.4.3. Derive the sentence + * 1 * 2 - 3 2 1 using the grammar in Figure 3.14.

The benefit of Polish notation is that it is extremely simple, and easy to parse. The issue with Polish notation
is that it’s difficult to read. Imagine having to write code with a prefix form of if-then-else. OCaml code of
the form:

if n < 10

then -1

else if n > 10
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<expr> ::= <num> | ( <expr> <op> <expr>)
<op> ::= + | - | * | /

<num> ::= 1 | 2 | 3

Figure 3.15: BNF specification for arithmetic expressions using many parentheses

then 1

else 0

becomes something like:

if_then_else < n 10

-1

if_then_else > n 10

1

0

which isn’t so bad, but is clearly less readable.4 This is all to say that ambiguity in expressions is in part due
to issues of operator fixity.

Definition 3.4.2. The fixity of an operator refers to where the syntactic components of an operator are
placed relative to its arguments. There are four kinds of operator fixity.

▷ A prefix operator appears before its arguments. In the expression -5 the negation operator - ap-
pears before its argument 5.

▷ A postfix operator appears after its arguments. In the expression 10! the factorial operator !

appears after its argument 10.

▷ A infix operator appears between its arguments. Infix operators are required to be binary. In the
expression 4 + 3 the binary addition operator + appears between its arguments 4 and 3.

▷ A mixfix operator has multiple syntactic components which appear in some combination of before,
after, and in between its arguments. In the expression if x < 0 then -x else x the syntactic
components if, then, and else appear in various positions with respect to the arguments of the
if-then-else operator.

The above discussion indicates that if we’re willing to accept only prefix operators or only postfix operators,
then it’s easy to design unambiguous grammars. But if we want to contend with multiple kinds of operator
fixity, then we’ll have to confront the issues of grammatical ambiguity.

3.4.2 Parentheses

Another solution to the ambiguity problem is to surround every application of an operator with parentheses.
Figure 3.15 has such a grammar for arithmetic expressions.

4There are cases in which the simplicity trumps readability, e.g., for dialects of Forth.
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Exercise 3.4.4. Derive the sentence ((1 * (2 * (3 - 2))) + 1) using the grammar in Figure 3.15.

The issue with this approach is that it means our expressions has a lot of parentheses. This can be frustrat-
ing, but in reality it’s not so bad. Note that, if we parenthesize everything, the fixity of operators becomes
irrelevant; the parentheses play entirely the role of disambiguating multiple applications of operators. Fur-
thermore, if we design our grammar so that all operators are prefix, then we get S-expressions. This might
feel like piling one hard-to-read syntactic paradigm onto another, but there are quite a few programming
languages whose surface-level syntax is made up of S-expressions.5 And the benefits are vast: S-expressions
are dead-simple to parse, which makes for quick programming language development. They also allow for
some fancier features we won’t go into, but make for convenient macro systems in languages like Lisp and
Scheme.6

Remark 3.4.3. One common conceptual roadblock is in recognizing that parentheses are part of syntax.
We’re trained to think of parentheses as meta-syntax, included only to make things more clear, but never
explicitely considered (e.g., when you learned calculus, you likely didn’t have a lesson on “the use of
parentheses in analytic expressions”). But we’re on “the other side” so to speak, meaning we’re the
ones who have to specify exactly (i.e., formally) how parentheses work. In other words, we don’t get
parentheses “for free,” we have to implement them as part of the syntax of the language.

All told, our basic question becomes: how do we avoid grammatical ambiguity while being able to mix opera-
tor fixity and not use so many parentheses? And this question has a simple answer in theory: make explicit
assumptions about how operator arguments should be grouped. This will mean contending with two things:
associativity and precedence.

3.4.3 Associativity

Associativity refers to how arguments are grouped when we’re given a sequence of applications of an infix
operator in the absence of parentheses. For example, the expression:

1 + 2 + 3 + 4

can be understood as any one of the following:

((1 + 2) + 3) + 4

(1 + (2 + 3)) + 4

(1 + 2) + (3 + 4)

1 + ((2 + 3) + 4)

1 + (2 + (3 + 4))

In the case of addition, the point is somewhat moot. The order in which we group arguments doesn’t affect
the value of a sequence of additions. That is, addition is associative.

Definition 3.4.3. An operation ◦ : X → X → X is associative if

(a ◦ b) ◦ c = a ◦ (b ◦ c)

for all a, b, and c in X.

5I understand this might not be a compelling argument to the parentheses-intolerant among us (of which there are far too many)
but it at least indicates that the multitude of parentheses is an aesthetic inclination, and not just a quirk of the bizarre and aged.

6If you’re interested, look up the term homoiconicity.
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But not all operators are associative, e.g., subtraction. We need to decide how to implicitly parenthesize an
expression like 1 - 2 - 3 - 4. For binary operators, we typically choose one of the following two ways
of grouping terms.

Definition 3.4.4. An operator ◦ : X → X → X is said to be left-associative if sequences of applications
of the operator are understood as grouping arguments from left to right, i.e.,

a ◦ b ◦ c ◦ d = (((a ◦ b) ◦ c) ◦ d)

for any a, b, c, and d, in X. It’s said to be right-associative if arguments are grouped from right to left,
i.e.,

a ◦ b ◦ c ◦ d = (a ◦ (b ◦ (c ◦ d)))

Bringing this back to grammatical ambiguity, giving an implicit parenthesization of a sequence of opera-
tors means specifying a ”shape” for the corresponding parse tree. Taking subtraction to be left-associative
means that one of the two parse trees for the sentence 1 - 2 - 3 in the previous section is correct (the first
one) and the other is not (the second one).

Exercise 3.4.5. The following is a grammar for function types over the base types int and bool.

<fun-type> ::= <base-type> | <fun-type> -> <fun-type> | ( <fun-type> )
<base-type> ::= int | bool

Give two leftmost derivation of int -> bool -> int.

All of this rests on the following mathematical fact about the formal grammars.

Definition 3.4.5. A symbol X is useful in a BNF grammar G if there is a derivation of a sentence S in G
which uses the symbol X.

Proposition 3.4.1. Let G be a BNF grammar and let <a> and <b> be arbitrary nonterminal symbols which
are useful in G. Further suppose that

<a> ::= <a> <b> <a>

is a production rule of G. Then G is ambiguous.

Exercise 3.4.6. (Challenge) Prove Proposition 3.4.1.

Generally speaking we should be wary of production rules of the form given in Proposition 3.4.1, because
it’s possible to construct subtrees along the lines of the ones given for subtraction above:

<a>

<a>

<a> <b> <a>

<b> <a>

<a>

<a> <b> <a>

<a> <b> <a>
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<expr> ::= <expr> <op> <expr-no-op> | <expr-no-op>
<expr-no-op> ::= <num> | ( <expr> )

<op> ::= + | - | * | /
<num> ::= 1 | 2 | 3

Figure 3.16: BNF specification for arithmetic with left-associative operators

Proposition 3.4.1 implies that a grammar for arithmetic will be ambiguous as long as it contains the rule

<expr> ::= <expr> <op> <expr>

as the grammar in Figure 3.8 does. The question remains: what do we do about this? According to the
discussion above, this is in part an issue of associativity. The problem arises from the fact that we can
expand both the left and the right argument of an operator to be another application of a binary operator.

The first step is to specify an associativity assumption for binary operators. It’s typical to take addition,
subtraction, multiplication and division to be left associative, e.g., this is the “correct” parse tree for 1 - 2 -

3:

<expr>

<expr>

<expr>

<num>

1

<op>

-

<expr>

<num>

2

<op>

-

<expr>

<num>

3

Another way of expressing left-associativity is that the right argument of an operator can’t be another ap-
plication of the operator. In order to enforce left-associativity of operators, we need to “factor out” the ap-
plication of a binary operator. Said another way, we need to create a new nonterminal symbol <expr-no-op>
which is the same as <expr> but which can’t be expanded to an application of a binary operator. This is done
for the grammar in Figure 3.16.

Exercise 3.4.7. Draw parse trees for the following sentences using the grammar in Figure 3.16.

1 - 2 - 3

1 * (2 - 3)

1 + 2 * 3

Proposition 3.4.2. The grammar in Figure 3.16 is unambiguous.

Exercise 3.4.8. (Challenge) Prove Proposition 3.4.2.

35



CHAPTER 3. FORMAL GRAMMAR CAS CS 320

Exercise 3.4.9. Rewrite the grammar in Exercise 3.4.5 so that it is unambiguous and the function type
arrow is taken to be right associative.

3.4.4 Precedence

We’re getting closer to a grammar that captures our intuitions about arithmetic expressions. We’ve suc-
ceeded in designing a grammar that is not ambiguous, but as is demonstrated in Exercise 3.4.7, we’ve
failed to enforce an aspect of arithmetic expressions that we learn in grade school: 1 + 2 * 3 should be
equivalent to 1 + (2 * 3) and not (1 + 2) * 3. This is an issue of precedence or order of operations,
something that you’re likely already familiar with. And like associativity, incorrectly dealing with prece-
dence can affect the output value of a program.

If you went through the American public school system then you probably learned the abbreviation
PEMDAS (Parentheses, Exponentiation, Multiplication, Division, Addition, Subtraction) along with an ac-
companying mnemonic, something like “please excuse my dear aunt sally.” Focusing on just the last four
letters, this rule tells us that we should group multiplications and divisions first, and then group additions
and subtractions. That is to say, multiplication and division have greater precedence than addition and
subtraction.

Definition 3.4.6. The precedence of an operator, relative to another operator, determines which operator
binds more tightly, in the presents of ambiguity.

Like associativity, the relative precedence of a collection of operators determines the shape of the parse tree.
To say that multiplication has higher precedence is to say that when we build the parse tree for 1 * 2 + 3,
the operator “+” should be the top-level operation, i.e., at the root of the tree.

Remark 3.4.4. One thing that was probably glossed over if/when you learned PEMDAS: what do you do
with something like 1 + 2 - 3 + 4? Do you group additions and then subtractions? Or vice versa? The
issue here is that addition and subtraction have the same precedence (something which is not made clear
by PEMDAS). In this case, we’ll use the associativity of the operators to determine how to parenthesize,
i.e., given a sequences of operators of the same precedence, we use their associativity to group them.

Since addition and subtraction are both left-associative, the above expression should be equivalent
to ((1 + 2) - 3) + 4. Things get complicated if we have two operators with the same precedence, but
different associativity. We’ll ignore this possibility, but this matters in languages like Haskell, where users
can define their own operators with specified precedence and associativity.

How do we deal with precedence? In the same way that as we dealt with associativity: by “factoring out”
the operators of higher precedence. Another way of expressing that “*” has higher precedence than “+” is
to say that the arguments of “*” can’t be applications of “+” (of course we can still put additions in paren-
theses). Said another way, we need to create a new nonterminal symbol <expr-no-pm> which is the same
as <expr> but which can’t be expanded to an addition or subtraction. This is done for the grammar in Fig-
ure 3.17. Note that, in this grammar, we also maintain the asymmetry introduced to deal with associativity.

Figure 3.18 has a parse tree for the sentence 1 + 2 * 3 in this grammar. Naturally the tree is “noisier”
in that there’s more intermediate nonterminal symbols, but hopefully the point is clear: we have to expect
with addition first because otherwise, we’d get stuck. That is, if we expand the multiplication first, the
grammar disallows us expanding the left argument to 1 + 2.

Exercise 3.4.10. Give a derivation of (1 + 2) * 3 using the grammar in Figure 3.17
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<expr> ::= <expr> <pm> <expr-no-pm> | <expr-no-pm>

<expr-no-pm> ::= <expr-no-pm> <md> <expr-no-op> | <expr-no-op>
<expr-no-op> ::= <num> | ( <expr> )

<pm> ::= + | -
<md> ::= * | /
<num> ::= 1 | 2 | 3

Figure 3.17: BNF specification for arithmetic with left-associative operators

<expr>

<expr>

<expr-no-pm>

<expr-no-op>

<num>

1

<pm>

+

<expr-no-pm>

<expr-no-pm>

<expr-no-op>

<num>

2

<md>

*

<expr-no-op>

<num>

3

Figure 3.18: Parse tree of 1 + 2 * 3 using the grammar in Figure 3.17
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3.4.5 Operator Tables

In the next chapter, we’ll see how to implement parsers for a given grammar. One way is to use a parser
generator, which is a program that generates the code for a parser based on a specification. More on
that later, the point: most parser generators don’t require us to use the techniques above to deal with
associativity and precedence. Rather, they take additional about associativity and precendence directly,
often in the form of an operator table. For arithmetic, we might use the following table, which presents
operators in order of increasing precedence.

Operator Associativity
+, - left
*, / right

Note that, in light of Remark 3.4.4, it’s reasonable to assume that all operators of the same precedence (i.e.,
appearing in the same row) have the same associativity. The OCaml Manual has an analogous table for its
operators.

Remark 3.4.5. We can think of this as an a posteriori approach to disambiguation; rather than designing a
grammar in which every sentence has a unique parse tree, we design an ambiguous grammar and then
specify which of the parse trees we consider acceptable. As long as the only source of ambiguity is due
to associativity and precedence of binary operators, operator tables allow use to associate with every
sentence a unqiue parse tree.

A final word of warning for this section: as much as we’ve tried to present grammars as a rigorously as
possible, they tend to be a bit handwavy in practice. For example, the following is a standard presentation
of arithmetic expressions in a more mathematical setting:

e ::= e + e | e − e | e ∗ e | e/e | Z

where Z refers to any integer. Operator associativity and precedence are understood from context and the
production rule:

e ::= (e)

is implicitly assumed, contrary to Remark 3.4.3! In other settings, (e.g., the full grammar specification of
Python) the notation used is a mixture of multiple syntaxes for grammar specifications. This is just to say,
there is a difference between grammars as they are studied in formal language theory, and as they are used
to specify programming languages or used to specify syntaxes in mathematical settings like logic and type
theory. In the later cases, you’ll likely have to read between the lines, so to speak.

3.5 Extended BNF

There are several extensions of the BNF meta-syntax which make it more usable. We’ll consider a small
collection of extensions which capture common patterns of programming language syntax. We’ll call BNF
plus these extensions extended BNF, or EBNF for short. In particular, we’ll use BNF if we intend to exclude
the following extensions to the meta-syntax.
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Options

Definition 3.5.1. We use the notation [SENT-FORM] for parts of a production rule which are optional.
That is, we write

<nt> ::= SENT-FORM1 [SENT-FORM2] SENT-FORM3

as shorthand for

<nt> ::= SENT-FORM1 SENT-FORM3

| SENT-FORM1 SENT-FORM2 SENT-FORM3

Example 3.5.1. We can use the EBNF production rule

<if-expr> ::= if <expr> then <expr> [else <expr>]

to write a grammar whose expressions allow for both if-then statements and if-then-else statements.

Exercise 3.5.1. Rewrite the following EBNF production rule as a collection of BNF production rules.

<a> ::= a [<b>] [a]

Remark 3.5.1. One issue with extending BNF syntax is that it’s more difficult to express grammars which
include symbosl used for the extensions (e.g, “[” and “]”). In practice this is not a huge problem, we’ll try
to be explicit (e.g., by using color) in distiguishing between symbols in the meta-language and terminal
symbols in the grammar.

Alternatives

Definition 3.5.2. We use the notation (SENT-FORM1 | . . . | SENT-FORMk) for parts of a production rule
which can be one of several. This is like alternative syntax, but it allows us to embed the alternatives
within the production rule. We write

<nt> ::= ST-FM0 (ST-FM1 | . . . | ST-FMk) ST-FMk+1

as shorthand for

<nt> ::= ST-FM0 ST-FM1 ST-FMk+1

...

| ST-FM0 ST-FMk ST-FMk+1

Example 3.5.2. We can simplify the grammar in Figure 3.8 by removing the nonterminal symbol <op>
and putting the alternative binary operators within a single rule:

<expr> ::= <expr> (+ | - | * | /) <expr>
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<e> ::= <e-no-pm> {(+ | -) <e-no-pm>}
<e-no-pm> ::= <e-no-op> {(* | /) <e-no-op>}
<e-no-op> ::= <num> | ( <e> )

<num> ::= 1 | 2 | 3

Figure 3.19: EBNF specification for arithmetic

Exercise 3.5.2. TODO

Repetition

Definition 3.5.3. We use the notation {SENT-FORM} for part of a production rule which can be repeated
as many times as we want. That is, we write

<nt> ::= ST-FM0 {ST-FM1} ST-FM2

as shorthand for

<nt> ::= ST-FM0 ST-FM2

| ST-FM0 ST-FM1 ST-FM2

| ST-FM0 ST-FM1 ST-FM1 ST-FM2

...

The previous definition is an abuse of notation. Even though we didn’t strictly enforce it, we tend to think
of grammars as having a finite number of production rules. We can’t give a simple translation into BNF
production rules as we did for the previous extensions because such a translation would require use to
make a choice: do we repeat to the left or the right? In other words, is

<nt> ::= ST-FM0 {ST-FM1} ST-FM2

shorthand for

<nt> ::= ST-FM0 <reps> ST-FM2

<reps> ::= ε | ST-FM1 <reps>

or

<nt> ::= ST-FM0 <reps> ST-FM2

<reps> ::= ε | <reps> ST-FM1

Rather than fixing a choice, we treat a repetition as being expandable to any number of its corresponding
sentential form.
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Example 3.5.3. Figure 3.19 has a grammar which takes advantage of these extensions to BNF in the case
of arithmetic expressions. Note that we lose the ability to express that the operators are left-associative
because the repetitions are expanded in a single step. Take, for example the following derivation of 1 +

2 + 3 * 1 + 2:

<e>

<e-no-pm>

<e-no-op>

<num>

1

+ <e-no-pm>

<e-no-op>

<num>

2

+ <e-no-pm>

<e-no-op>

<num>

3

* <e-no-op>

<num>

1

+ <e-no-pm>

<e-no-op>

<num>

2

Because the operator applications are collapsed to a single level the left associativity of the operators
needed to be dealt with in a different way. We’ll see how this is done in the next chapter.

Remark 3.5.2. These extensions of BNF syntax are strictly meta-syntactic. The notion of a derivation or
a parse tree does not change. In particular, as in Example 3.5.3, EBNF syntax should never appear in a
derivation or a parse tree.

Exercise 3.5.3. TODO

3.6 Regular Expressions

The last topic of formal language which we’ll take on is that of regularity. As we’ll see, regular grammars
play a key role lexical analysis the first step of our interpretation pipeline.

Definition 3.6.1. A (right) regular grammar is one in which every production rule is of the following
form:

1. <n> ::= t <m>

2. <n> ::= t

3. <n> ::= ε
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Example 3.6.1. The following is a regular grammar.

<a> ::= a <a>

<a> ::= a <b>

<b> ::= b <b>

<b> ::= ε

This grammar recognizes the sentence aaabb and has the following parse tree.

<a>

a <a>

a <a>

a <b>

b <b>

b <b>

Regular grammars are incredibly simple. The parse trees for the sentences they recognize are always
skewed, as in Example 3.6.1. This simplicity makes it easy to write a naive algorithm for determining if
a sentence is recognized by a regular grammar. We can interpret the skewedness as visually demonstrating
that every rule in a grammar “makes forward progress” towards recognising a sentence. This means that a
basic backtracking approach suffices for the recognition algorithm. We begin by setting up some types.

type nonterminal = NT of char

type terminal = T of char

type rule_rhs =

| Empty

| Term of terminal

| Continue of terminal * nonterminal

type rule = nonterminal * rule_rhs

type sentence = terminal list

Then, for a given sentence, we find a rule which matches its first character on the right-hand-side, and
recurse on the remainder of the sentence as necessary.

let recognizes

(start : nonterminal)

(rules : rule list)

(sent : sentence) : bool =

let rec go start = function

| [] -> List.exists ((=) (start, Empty)) rules
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| t :: ts ->

let matches (nterm, rule) =

match rule with

| Empty -> false

| Term term -> term = t && List.is_empty ts

| Continue (term, next)

when nterm = start

&& term = t ->

go next ts

in

List.exists matches rules

in

go start sent

Regular grammars are surprisingly expressive. They can recognize a fairly wide range of useful languages.
But in a sense, regular grammars are too simple. Specifying the regular grammars for “useful” lanuages can
be complicated. Regular expressions are an alternative to BNF specifications for regular grammars with
a compact and natural syntax. And they maintain the feature that its possible to write simple recognition
algorithsm for regular expressions.

Definition 3.6.2. The set of regular expressions over the terminal symbols T are defined inductively as
follows:

▷ (empty) ε is a regular expression;

▷ (terminal) if t ∈ T then t is a regular expression;

▷ (repetition) if e is a regular expression, then e∗ is a regular expression;

▷ (alternatives) if e1, . . . , ek are regular expressions, then (e1 | . . . | ek) is a regular expression;

▷ (concatenation) if e1, . . . , ek are regular expressions, then e1 . . . ek is a regular expression;

Definition 3.6.3. ▷ e? is shorthand for (ε | e)

▷ e+ is shorthand for e e∗
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Definition 3.6.4. TODO

(empty)ε ◁ ε

t ∈ T
(terminal)

t ◁ t

e ◁ S1 . . . e ◁ Sk (repetitionk)
e∗ ◁ S1 . . . Sk

ei ◁ Si (alternativesi)
(e1 | . . . | ek) ◁ Si

e1 ◁ S1 . . . ek ◁ Sk (concatenationk)
e1 . . . ek ◁ S1 . . . Sk

Example 3.6.2. The regular expression a+b∗ recognizes aaabb.

a ◁ a
a ◁ a a ◁ a (rep)

a∗ ◁ aa (concat)
aa∗ ◁ aaa

b ◁ b b ◁ b (rep)
b∗ ◁ bb (concat)

aa∗b∗ ◁ aaabb

Theorem 3.6.1. Let G be a regular grammar. There is a regular expression e such that for any sentence S,
the grammar G recognizes S if and only if e ◁ S.

Theorem 3.6.2. Let e be a regular expression. There is a regular grammar G such that for any sentence S,
the grammar G recognizes S if and only if e ◁ S.

3.7 Exercises
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Chapter 4

Parsing

4.1 General Parsing

4.2 Lexical Analysis

4.3 Recursive-Descent

4.4 Parser Combinators

4.5 Parser Generators
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Chapter 5

Operational Semantics

Write section of formal semantics
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Chapter 6

Evaluation

Write section of evaluation.

47



Chapter 7

Type Systems

Write section on type systems.
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Chapter 8

Type Checking

write section on type checking
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Chapter 9

Type Inference

Write section on type inference.
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Appendix A

Trees

Trees—or, more generally inductively-defined structures—are core to the study of programming languages.
This is, in part, why functional programming languages like OCaml are well-suited for implementing pro-
gramming languages. As such, we have to spend some time on the humble notion of trees. This appendix
covers a small slice of the topic, only what we need for the main part of the text.1

If you’ve taken a course in discrete mathematics, you’ve likely seen the graph-theoretic definition of
trees.

Definition A.0.1. A tree is undirected graph which is connected and acyclic. A directed tree is a directed
graph whose underlying graph is a tree. A directed tree is rooted if there is a unique vertex with in-
degree 0.

We’ll be primarily interested in nonempty rooted directed trees.2 These are also sometimes called rose trees.
To make this more explicit we’ll work with the inductive definition of (rose) trees.

Definition A.0.2. A tree with values from V is defined inductively as follows:

▷ if v is a value from V and T1, . . . , Tk are trees then so is node(v, T1, . . . , Tk).

Note, in particular, that node(v) a tree for any value v from V. We call this kind of tree a leaf. The root of
a tree is defined as:

root (node(v, T1, . . . , Tk)) ≜ v

and the children a tree are defined as:

children (node(v, T1, . . . , Tk)) ≜ (T1, . . . , Tk)

1There are whole books dedicated to the study of mathematical induction and inductively defined structures.
2Moving forward “tree” we will always mean “nonempty rooted directed tree.”
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Example A.0.1. Decision trees represent boolean functions, and we can represent a decisions tree as a
rose tree. One decision tree for the boolean function OR(x1, x2, x3) = x1 ∨ x2 ∨ x3 is:

node(x1 = 1, node(1), node(x2 = 1, node(1), node(x3 = 1, node(1), node(0))))

Values of this tree are queries to the inputs of the function. Roughly speaking, this decision tree expresses
that the value of OR(x1, x2, x3) can be determined by searching from left to right for an input which is
equal to 1.

We can naturally define rose trees in OCaml, which means we can also define the usual functions on trees:

type 'a rose_tree = Node of 'a * 'a rose_tree list

let example = Node (1, [Node (2, []); Node (3, [])])

let rec depth (Node (_, ts)) =

List.fold_left

(fun acc n -> max acc (n + 1))

0

(List.map depth ts)

let rec size (Node (_, ts)) =

List.(fold_left (+) 1 (map size ts))

let _ = assert (depth example = 1)

let _ = assert (size example = 3)

We visualize trees in the usual way. Here, for example, is a visualization of the tree from Example A.0.1:

x1 = 1

1 x2 = 1

1 x3 = 1

1 0

We’ll also occassionally use the following form of tree visualization, which we’ll call compact form:

x1 = 1

1

x2 = 1

1

x3 = 1

1

0

52



APPENDIX A. TREES CAS CS 320

This form is based on visualizations of file trees.3 It’s particularly useful when a tree it too wide to draw
otherwise, e.g., when the values in nodes are themselves very wide. There’s one more form of tree visual-
ization we’ll use for drawing derivation trees; this will be covered in Chapter 2.

A.1 Structural Induction

Induction is a principle used to prove universal statements about inductively-defined structures (like trees).
If you’ve taken a course in discrete mathematics, you’ve likely seen the principle of natural number induc-
tion:

Given a property P of natural numbers, if:

▷ P holds of the number 0;

▷ for every number k, if we assume P holds of k (an assumption often called the induction hypothe-
sis), then we can demonstrate that P holds of k + 1;

then P holds of every natural number.

Exercise A.1.1. Prove that

2
n

∑
i=1

i = n(n + 1)

holds for all natural numbers n using natural number induction.

Inductive structures—by definition of being inductive—have analogous induction principles. Here’s the
principle of tree induction:

Given a property P of trees with values from V, if

▷ for any value v from V, and trees T1, . . . , Tk, if we assume that P holds of each tree T1, . . . , Tk
4 then

we can demonstrate that P holds of node(v, T1, . . . , Tk);

then P holds of all trees with values from V.

We won’t concern ourselves further with the general notion of trees.5 We’ll focus on inductively-define
subsets of trees.

Notation A.1.1. For a set A, we write A∗ for the set of finite sequences of elements of A and we write
A+ for the subset of nonempty sequences in A∗. For example, the sequence (1, 2, 3, 4, 5) is an element of
both N∗ and N+.

Definition A.1.1. Let Q be a property on V+. The inductively-defined subset of trees Q given by Q is
defined (inductively) as follows:

▷ for any value v from V and trees T1, . . . , Tk from Q, if Q holds of (v, root (v1) , . . . , root (vk)) then
node(v, T1, . . . , Tk) ∈ Q.

3If you’re interested, look up the command line tool tree, or just type tree . in your terminal and see what you get.
4Again, this assumption is called the induction hypothesis.
5There isn’t much more we can say without also formally defining recursion on trees, another interesting topic that we’ll unceremo-

niously brush under the rug.
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In other words, inductively-defined subsets of trees are defined by describing when we’re allowed to build
new trees from those we’ve already built.

Example A.1.1. Consider the inductively-defined set Q of trees with values from N given by the property
Q which holds of (v, v1, . . . , vk) when v is prime or v = v1 . . . vk. That is, the value at the root of a given
tree is prime or the product of the roots of its children. The following is an example of such a tree.

60

5 12

2 3 2

We might recognize that the leaves of this tree define a prime factorization of the root, e.g., 60 = 5 ∗ 2 ∗
3 ∗ 2.

Once we have inductively-defined subsets of trees, we can define their corresponding principle of induc-
tion. It’s the same as the principle of tree induction but with a slightly stronger induction hypothesis:

Given a property P of trees with values from V and a property Q which inductively-defines a subset Q
of trees, if

▷ for any value v from V, and trees T1, . . . , Tk from Q, if we assume that P holds of each tree T1, . . . , Tk
and that Q holds of the sequence (v, root (T1) , . . . , root (Tk)) then we can demonstrate that P holds
of node(v, T1, . . . , Tk);

then P holds of all trees in Q.

Let’s see this in action. Consider the subset Q of trees defined in Example A.1.1. We’d like to prove that for
any tree T from Q, the number root (T) has a prime factorization.

Proof. Let node(n, T1, . . . , Tk) be a tree in Q and suppose that root (Ti) has a prime factorization p1,i . . . pli ,i
for all indices i. Furthermore we assume, by definition of Q, that n is prime or

n = root (T1) . . . root (Tk)

If n is prime, then n is also its prime factorization. Otherwise,

n =
k

∏
i=1

root (Ti) =
k

∏
i=1

(p1,i . . . pli ,i)

yielding a prime factorization of n. That is, we take the product of all the prime factorizations of the children
of T to get a prime factorization of its root.6

A.2 Induction on Derivations

What we’ve done so far is more general than necessary, and is ultimately in service of defining the derivation
induction principle. First, observe that the set of derivations in a given inference system I , as defined in

6What we’ve done here is only part of the fundamental theorem of arithmetic. We would also need to prove that every natural
number is the root of some tree in Q, which we can prove by (strong) induction over natural numbers (we also say nothing of
uniqueness...).
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Chapter 2, is an inductively-define subset of trees. The property is straightforward: it holds of the nonempty
sequence of judgments (J, J1, . . . , Jk) when

J1 . . . Jk
J

is (an instance of) an inference rule of I . In other words, a derivation is a tree in which every node is
either an axiom or follows from an inference rule. The upshot is that the derivation induction principle is a
specialization of the induction principle for inductively-defined subsets of trees.

Our second observation: being able to prove that a property holds of all derivations is enough to be
able to prove that a property holds of all derivable judgments. There’s is an obvious correspondence between
derivations and derivable judgments: if a judgment is derivable, then it has a derivation. And this is
ultimately what we care about when we reason about things like type safety (??). All said, we can state the
derivation induction principle as follows:

Given a property P of judgments of I , if

▷ for any judgment J and derivable judgments J1, . . . , Jk, if we assume that P holds of each judgment
J1, . . . , Jk where

J1 . . . Jk
J

then we can demonstrate that P holds of J;

then P holds of all derivable judgments of D.

This principle tells us that we can look at the last inference rule applied and prove that the property holds
assuming it holds of the antecedents of the applied rule.

It may be easier to grok this principle by example. Consider the following basic inference system over
judgments of the form “n is even” where n ∈ N.

Example A.2.1. This system is taken directly from Chapter 2.

(zero)
0 is even

m is even n = m + 2
(addTwo)

n is even

We’d like to prove that this inference system is sound, i.e., that if “n is even” is derivable, then n is, in fact,
even (in particular, “3 is even” is not derivable). We can prove this by induction on derivations.

Proof. Let J denote an arbitrary judgment “n is even.” There are two cases to consider.

▷ If J follows from (zero), then J must be the judgment “0 is even” in which case the property holds.

▷ If J follows from (addTwo), then “n − 2 is even” must be derivable and we may assume that n − 2 is
even. This implies that n itself is even.

In a sense, this example might be too simple. It’s not immediately clear that we’ve done anything in this
proof; the distinction between n being even and the judgment “n is even” being derivable is admittedly
a subtle one. But, in order to avoid ballooning this appendix into a full-blown chapter, I’ll relegate the
presentation of more interesting examples to ??.
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320Caml Specification

Include 320Caml spec.
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